Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange


von Willebrand Factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excess bleeding of type 2A von Willebrand (VW) disease. Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report cryo-EM structures of complete VWF tubules before and after intermolecular disulfide-bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states prior to and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VW disease-causing mutations.


Last updated on 07/08/2022