Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant

Citation:

Jun Zhang, Tianshu Xiao, Yongfei Cai, Christy L. Lavine, Hanqin Peng, Haisun Zhu, Krishna Anand, Pei Tong, Avneesh Gautam, Megan L. Mayer, Richard M. Walsh Jr., Sophia Rits-Volloch, Duane R. Wesemann, Wei Yang, Michael S. Seaman, Jianming Lu, and Bing Chen. 10/26/2021. “Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant.” Science, Pp. eabl9463.

Abstract:

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer and those of the Gamma and Kappa variants and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2, and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the N-terminal domain of the S protein, but only causes local changes in the receptor-binding domain (RBD), making the RBD a better target for therapeutic antibodies.
Last updated on 02/22/2022